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Abstract – Integer algorithms, where applicable, can both 

decrease the memory requirements and improve the speed of 

the convolutional neural networks (CNN). Boolean activations 

can further increase the speed gain.  Here, we propose a 

convolutional algorithm called BoolHash. It is based on pre-

calculated inference lookup tables (PCILTs). In addition, it uses 

activation merging to additionally increase the inference speed. 

We used a CNN with INT16 input weights, INT8 filter weights 

and boolean activations to compare the speed of BoolHash to 

that of a classic weight-adder (WA) convolutional algorithm. 

Keywords – boolean activations, convolutional neural 

network, inference speed, integer weights. PCILTs. 
 
 This paper describes an extended version of the base 
BoolHash algorithm, which was originally reported in [1]. 
 

I. INTRODUCTION 
 
 The convolutional neural networks (CNNs) achieve some 
of the best artificial neural networks (ANNs) precisions. At 
the same time, they have lower computing requirements 
(CRs) than most other ANNs. Their algorithms however 
involve a lot of arithmetical operations. To achieve better 
productivity, they are usually run on hardware architectures 
that feature high-speed ALUs. 
 A different road to faster work is the usage of algorithms 
that rely on faster and/or fewer operations. Yet another is 
using operations that require simpler hardware – it is not only 
faster, but also uses less on-chip size, thus allowing to fit 
more processing units on a single die. These approaches can 
often be combined to allow for faster and cheaper solutions. 
 

II. OVERVIEW AND RECENT RESEARCH REPORTS 
 
 Many attempts to reduce the CRs of the CNNs exist. V. 
Sze et al. [2] categorize them into three classes, based on 
their design levels: hardware platforms, memory 
technologies and software algorithms. We focused our work 
on the second and the third area, while taking into account 
how they reflect on the first area. 
 Most research in memory technologies is focused on 
decreasing the bit width of the processed values (input 
weights, filter weights, activations, etc), and/or on using 
integer instead of floating-point arithmetic. Examples are: 

• Ilin et al. [3] use 8-bit integer arithmetic (INT8) in image 
recognition to approximate calculations. 

• Truong et al. [4] compares the memory footprint of 
Integer-Net with a 32-bit floating-point (FP32) 
implementation and achieves 7x reduction, at the cost of 
only 2% loss of performance. 

• Wu et al. [5] create a NN model with integer-only data: 
2-bit (INT2) weights, INT8 activations, INT8 gradients 
and INT8 errors. 

• Das et al. [6] implement AlexNet and other ANNs, using 
16-bit (INT16) and 32-bit (INT32) dynamic fixed point 
values. With these, they achieve improved throughput on 
Xeon CPUs, while preserving the accuracy of the 
originals. 

• de Bruin et al. [7] implement ANNs on low-end hardware 
(embedded ARM CPUs) by achieving sufficient 
quantization on 16-bit CPU accumulators. 

• F. Zhu et al. [8] train unified INT8 ANNs and research 
their gradients. They propose universal techniques for 
managing these that avoid the direction deviation and the 
illegal gradient updates. 

• Rastegari et al. [9] describe Binary Weight Networks, 
where filter weights are boolean, and XNOR-Networks, 
where both weights and activations are boolean. With 
these, they achieve results equal to or better than AlexNet 
and a BinaryNet implementation of ImageNet. 

• While trying to improve the precision of Binary Weight 
Networks, Li et al. [10] propose Ternary Weight 
Networks. There weights can have three possible values 
instead of two. C. Zhu, et al. [11] add a quantization 
technique to these. 

• X. Lin et al [12] work on the performance of CNNs with 
binary weights and activations. They improve it by 
approximating full-precision weights with linear 
combination of multiple binary weight bases. They also 
use multiple binary activations to alleviate information 
loss. 

• In [13], Jacob et al. describe an algorithm that quantizes 
weights and activations down to INT8, and bias vectors 
down to INT32. 

• Gysel et al. [14] create a framework for approximating 
ANNs while reducing the bit width of their values. They 
state that it is often able to reduce a network to using 
INT8 values with a loss of precision smaller than 1%. 

• Yu-Chen Lin et al. [15] replace the floating point 
multiplier in IA-Net with an integer adder. They also 
target memory reduction through model compression. 
They also achieve 20% reduction of the inference time. 

 The efforts on decreasing the CRs of CNNs appear to be 
focused mostly on researching faster matrix multiplication 
algorithms. Examples are: 

• Mathieu at al. [16] compute convolutions as Fourier 
pointwise products. They achieve speedup of over a 
magnitude by reusing the transformed feature map. 

• Abtahi et al. [17] increase convolution speed several 
times by using FFT variants. 



• Chitsaz et al. [18] point that splitting solves some 
problems in FFT computation with small kernels, like 
the ones in a typical CNN. 

• Lavin et al. [19] propose a family of algorithms, based 
on Winograd’s minimal filtering, that use fast matrix 
multiplication. They reduce the CNN multiplications up 
to 2.25 times. 

• In [20], Ju et al. analyze many fast convolution 
algorithms, presenting them as formal bilinear ones. 
They show that the overlap-add and Winograd family 
algorithms rival the accuracy of FFT while avoiding 
complex arithmetic. They present a corollary for the 
minimum rank of a bilinear algorithm for linear 
convolution, and present algorithms that achieve it. 

• Kim et al. [21] test AlexNet versions on GPUs and find 
that both FFT and Winograd / Toom-Cook methods are 
up to 4x faster than the direct multiplication (DM) 
method. (We believe that this might not be true on 
custom ASICs, due to the bigger and more complex 
circuitry required by these methods.) 

• In [22], Sifre introduces separable convolution. Lebedev 
et al. use in [23] spatially separable convolution, and 
increase speed with only a small precision loss, through  
not using some filters. 

• Chollet [24] and Ghosh [25] describe depthwise 
convolution and show that it avoids some limitations of 
the spatially separable convolution. 

• Lebedev et al. and He et al. [26] apply decomposition 
(CP- and depth-wise, respectively) to speed up separable 
convolution. 

 
III. CONSIDERATIONS 

 
 Comparing the hardware energy consumption and on-chip 
area of INT8 and FP32 operations, Daily [27] finds that the 
difference in speed is 30x for addition and 18.5x for 
multiplication, and the difference in on-chip area is 116x for 
addition and 27x for multiplication, in favor of INT8. 
Assuming an addition-based DM algorithm variant and 
integer-only ALU, we deduce on this base that an ASIC 
implementing an INT8-based CNN might be over 300x 
faster than an ASIC that implements an FP32-based CNN. 
 Jacob et al. [13] observe that on modern hardware with 
pipelined instructions addition instructions are not faster than 
multiply/add instructions. However, in a custom ASIC an 
addition-only circuitry will inevitably be faster and smaller 
on-chip than a multiply/add circuitry. 
 Rastegari et al. [9] show that boolean filter values permit  
using addition instead of multiplication as a convolutional 
operation. Further on, they show that having also boolean 
activations permits using bitwise operations in convolution. 
This results in a very fast algorithm with acceptably precise 
results in some tests. Li et al. [10] also use addition instead 
of multiplication in ternary weight networks. 
 In [28], Ko et al. conclude that substantial bit width 
decreases can severely degrade performance. However, 
Zhou et al. [29] design an incremental network quantization 
algorithm that achieves significant bit width decrease 
without performance loss, at the cost of being significantly 
more complex. The biological neural networks (BNNs), 
whose functionality the ANNs imitate, achieve in many 
neurons a fine-grainedness of the input weighting that is 
equivalent to bit width of 8 or more. Some of them also 
achieve an equivalent of an activation bit width of 4 bits or 
more, mostly through varying the frequency of their spikes. 
 Due to this, we believe that boolean input and/or filter 
weights might be insufficient for most CNN tasks, especially 

when combined with boolean activations. However, we also 
note that activation bit width over 1 can often be replaced 
with higher bit width of the filter and/or the input weights, 
and possibly with a higher connectivity (eg. number of 
neurons in a layer), without degrading the results precision. 
 Many biological neurons and even some “layers” in BNNs 
have effectively boolean activations. This makes us conclude 
that for some tasks, sizable parts of ANNs or even entire 
ANNs can rely on boolean activations without 
compromising the task they perform. 
 Using boolean activations also eliminates the need for 
ReLU layers. This improves the network speed and memory 
footprint, and simplifies its overall algorithm, making it 
easier to design an ASIC for. Due to this, boolean activations 
would be the preferred choice where they can achieve 
satisfactory results. 
 

IV. OUR MODEL 
 
 To improve the inference speed, we designed an 
experimental CNN model with INT16 input weights, INT8 
filter weights and boolean activations. Despite that 
Krishnamoorthi [30] concludes that input weights are 
quantizable to 4 bits only, we opted for the largest bit width 
in them, in order to keep the activations boolean and the size 
of the filter weights as low as possible (see Part V for the 
reasons). Our objective was to use as convolutional operation 
integer-only addition. This would allow us to keep the 
computational load as low as possible, since this operation 
makes the most calculations in a CNN network. At the same 
time, it would preserve sufficient inference base bit width to 
be able to achieve acceptable precision in many types of 
tasks. We left open the possibility to add and test other 
algorithms too. 
 To preserve the potential ASIC simplicity, we opted also 
for boolean-only backpropagation / gradient signals, taking 
the risk of decreasing the backpropagation efficiency and 
hence the training precision. 
 An exception from these constraints is that the input layer 
can process test data with higher bit width. Also, the output 
layer can produce activations with higher bit width (up to 
INT64), to allow for better evaluation of the results. 
 We wanted to test our designs in a strictly integer system, 
avoiding any possible involvement of floating-point 
operations and thus affecting the precision. To that goal, we 
implemented our model in C++ from the ground up, without 
defining floating-point data types anywhere in the code, or 
using any external code that could possibly contain floating-
point operations. 
 Seeking for faster convolutional algorithms that benefit 
specifically from boolean activations, we designed and 
suggest here an algorithm that we named BoolHash. 
 

V. THE BOOLHASH ALGORITHM 
 
A. Description 
 

 BoolHash combines two algorithmic approaches that so 
far have been used rarely and separately. One is the usage of 
look-up tables – in our case, for inference results. The other 
is treating the activations block as a bitstream that can be 
separated into processed values in any way that will improve 
the inference speed. 
 When using boolean activations, filter weights are added 
(instead of being multiplied) to the inference function dot 
result (DR) where the matching receptive field (RF) 
activation is true (1), and are skipped where the activation is 
false (0). Thus, the algorithm falls into the group of the 
weight-adders. 



 A filter is divided into segments, having N values each. In 
a receptive field, the activations that match the filter values 
in a segment are used as bits in an N-bit index. (Figure 1). 

 

 

Fig. 1. Filter and RF segments. Calculating PCILT offsets. 

 This index points to a pre-calculated filter weights sum 
(FWS), of the segment weights that match the “true” 
activation values. The FWSes for a segment are held in a pre-
calculated inference lookup table (PCILT). 
 After being located by this index, the FWS for each 
segment is added to the DR. Thus, the DR is calculated by N 
times less additions than in the classing weight-adder 
algorithm. (Figure 2). 

 

 

Fig. 2. Finding FWSes in filter PCILTs by PCILT offsets 

 Every filter segment has its own PCILT, containing the 
sums for the segment weights matching all possible 
combinations of activations values (Figure 3). Calculating 
the PCILTs is done only once in the filter lifetime, so the 
speed overhead it adds to the data processing is negligible. 
 In pre-trained CNNs the PCILTs can be saved in a 
permanent memory that allows fast look-ups. Also, the 
PCILT calculation code can be omitted there, decreasing the 
memory requirements. 

 

 

Fig. 3. Calculating a PCILT by a filter segment. 

 If the filter segments of the different neurons match, the 
activation values combinations (AVC) for every RF segment 
can be reused in all neurons that process the same activations 
block – typically all neurons in a layer. In this case, the AVCs 
are best calculated when the activations  block enters the 
convolutional layer. The overhead of this is usually much 
smaller than the economy on calculations of the algorithm. 

In large CNNs with hundreds or thousands of neurons in a 
layer, it is negligible. 
 Calculating PCILTs needs only an adder, and AVCs are 
calculated through bit masking and shifting. A BoolHash-
specific ASIC can use for these operations circuitry that is 
faster and takes much less on-chip space than a 
multiplication-able ALU. 
 
B. Disadvantages 
 

 BoolHash can require substantially more memory than 
algorithms like DM, separable convolutions or even FFT. 
The PCILT size is 2N: for N=8, a PCILT will have 256 
values. Also, a PCILT value might require more memory 
than a filter weight. 
 Pre-calculating all AVCs also increases N times the 
amount of memory needed for the activations. This can be 
alleviated by the fact that many types of hardware keep for 
optimal performance every data value in a separate byte, or 
even a combination of bytes. Thus, even a single data bit 
might need to be stored in 8, 16, 32 or 64 bits of RAM for 
optimal speed. Combining the data needs in such cases much 
less extra memory. 
 The memory expense importance depends on the specific 
hardware. BoolHash would be a wrong choice for systems 
with good arithmetic speed and limited memory. It can also 
be slow on systems with small RAM cache, if the PCILTs 
size significantly exceeds it – that would increase the cache 
swapping frequency. Tuning the algorithm to minimize the 
cache swapping might alleviate this problem. 
 BoolHash implementations over suitable ASICs would 
best integrate logic and PCILT memory as closely as 
possible. For example, they can calculate an RF inference by 
having a number of units, equal to the filter segments 
number, each of them using its AVC as an address in a local 
fast memory, containing its PCILT. 
 
C. Overcoming the memory expense 

 
 PCILT memory can be reduced by decreasing the N 
factor, seeking a task-specific optimal balance between 
speed gain and increased memory usage. For example, using 
N=4 instead of 8 will require PCILT memory for only 32 
values instead of 256, and will process 8 activations / filter 
weights with 2 additions instead of 1 (but still not with 8 
additions). This, it will need 8 times less PCILT memory at 
the cost of 2 times slower inferring process. 
 For some filters the number of the possible FWSes might 
be much smaller than the number of the possible weight 
combinations. (For example, with N=8 there will be 256 
possible weights combinations. However, if weight values 
repeat often, as is the case in many popular filters, there 
might be only 15-20 different sums of them.) If a FWS has 
higher bit width than is needed for a PCILT pointer, using an 
intermediary table with pointers to a PCILT that contains 
only the unique FWSes might bring a reduction of the 
memory used, at the cost of an additional indirection. 
 In addition, in large CNNs a neuron often has many filters. 
Usually the range and the diversity of the weight values in 
most of these are similar – their unique FWSes will overlap 
significantly. Moreover, some filters often repeat across 
many of the neurons in a layer. This makes it possible to use 
a common unique PCILT for all filters in a neuron, or even 
in a layer, decreasing further the memory it needs. 
 In many cases, filters can be divided into segments in such 
a way that many of their PCILTs will repeat – within the 
same filters, and / or between different filters in a neuron, 
layer or even the entire CNN. Segments that are identical by 
values and their order will have identical PCILTs. These can 

          

 

          

 

          

 



be replaced with pointers to an unique one. This can reduce 
the number of actual PCILTs in a CNN, leading to a decrease 
of the memory needed. It is best expressed with filters of a 
low actual cardinality. For example, an arbitrarily big CNN, 
having INT16 filter weights with actual cardinality of 32 and 
N=4, will need only about 64 MB PCILT memory. This is 
comparable with the RAM cache size for the best CPUs, as 
of 2021, and would be easy to provide in a CNN ASIC. (It 
however might require filter-specific AVCs, the generation 
of which might require more resources.) 
 Another way to decrease the memory needs is to consider 
the combined bit width of all filter weights in a segment. If 
the weights are INT7 and N is 8 (3 bits), a FWS value will 
need 10 bits, which would be rounded in most systems up to 
two bytes. However, if the filter weights are INT5 and N is 
8, the memory needed by a FWS value will be 8 bits – one 
byte only. (That is why we used in our model larger bit width 
in the input weights and smaller one in the filter weights.) 
 
D. Additional improvements and variants 
 

 With sufficient PCILT memory and small filters, one 
segment can cover an entire filter (Figure 4). This makes 
possible to obtain DR by a single memory addressing, 
without using – or having at all – an ALU. 

 

 

Fig. 4. A filter covered entirely by one segment, obtaining the 
inference result for an entire RF by just one PCILT access. 

 On different hardware, different filter segment layouts 
might ensure better speed than others. For example, on some 
hardware the inference might be faster if FWSes span 
columns, and on another if they span rows. 
 The value positions in a filter segment do not have to be 
consecutive. This allows implementing sparse filters that 
skip from processing any irrelevant RF positions or regions, 
increasing further the inference speed. AVCs are shared 
between same-input filters, and different filters might 
emphasize on different data regions, which limits the 
irrelevant percentage, require calculating different AVCs for 
different filters or sets of filters, etc. However, most types of 
data usually have a substantial irrelevant percentage, and 
most CNN layers have many filters that repeat between 
neurons. Thus, the processing speed might benefit from this 
ability of BoolHash. 
 Some value positions can be included in more than one 
filter segment, or even more than one time in the same 
segment. This allows weighting some RF positions or 
regions beyond what a limited filter weights range can 
achieve, at the cost of slight processing delay. Thus it allows 
limiting the weights range, which can decrease the memory 
needed by BoolHash. It also allows having different weight 
bit width for different filter positions. 
 Different segments in a filter may use different weight 
ranges and/or count of values per segment. This can be used 
to increase the speed and decrease the memory usage, esp. 
with non-consecutive value positions, or RF regions needing 
different weighting range. 

 The PCILT values can incorporate the input weight too, 
removing the need to multiply the DR by it. During the NN 
learning phase this will require modifying them during the 
backpropagation adjustment. Such a variant will be slower 
and more complex than modifying one input weight only. A 
suitable algorithm for modifying only relevant values in 
PCILTs might limit the slowing and potentially can make the 
weight adjustment more selective, where that is needed or 
acceptable. 
 This variant has much more modifiable weight values 
space than the DM algorithm. The difference with the 
separate convolution algorithms is even greater. This creates 
a potential for achieving better precision. (The redundancy 
there would probably be high. However, it can be removed 
post-learning, or even during learning through suitable 
methods for network compression.) Importantly, the weights 
space enlargement does not carry a proportional increase of 
the calculation load, unlike the other convolution algorithms 
– to the contrary, it decreases the computational load. 
 Another benefit is the ability to have segments that include 
weight values from different input filters. While misusing 
this might degrade the learning, using it correctly can allow 
for memory economy and increased speed. 
 By combining sparse, overlayed and/or multi-filter 
segments, BoolHash can perform through a single fast filter 
tasks that in some cases need more complex and / or slower 
processing (Figure 5). 
 

 

Fig. 5. A filter with INT2 weights, 
having both sparse and overlayed segments. 

Zero weights (not shown) are not processed, increasing speed. 
Weights with gray background are included in FWSes more than 

once, increasing their weight beyond the INT2 range. 

 The algorithmic base of BoolHash – using PCILTs with 
combined activations – is not limited to CNNs with boolean 
activation. It can work with integer activations and any filter 
weights. With non-boolean activations however it will need 
multiplication as a convolutional operation. Its only 
limitation is the amount of memory that might require. 
Activations with too big cardinality might require 
prohibitively big PCILTs, and/or might slow processing by 
increasing the RAM cache swapping. 
 BoolHash is also not limited to integer-only CNNs: it 
works equally well with floating-point filter weights. With 
them, it should bring even bigger speed improvements, but 
also will increase the memory requirements. 
 BoolHash can be used at the first stage of both spatially 
separable convolutions and depthwise convolutions. A 
BoolHash-specific CNN ASIC, will likely implement that as 
two successive operations in the separable convolution 
inference process, each using its own circuitry. This can help 
parallelizing the inference operations, and additionally 
speeding them up. 

          

 

           



 
VI. RESULTS 

 
 We compared the speed and the memory requirements of 
BoolHash and the classic DM algorithm in our 
implementation on 5 different general-purpose CPUs (Intel 
Core i7-3770K, Intel Xeon E5-2690, Intel Xeon E5-2450L, 
Intel Xeon E31220 and AMD A8-5600K). For tests fitting in 
their Level 1 RAM caches, all of them deviated from the 
average results by less than 5%. We attribute the deviations 
to differences between the CPUs in the size and the policies 
of the Level 2 and 3 RAM cache, and of the ALU and RAM 
access. Bigger deviations were observed where RAM usage 
exceeded the Level 1 cache size. 
 We used as data sources the MNIST Handwritten Digits 
database (60,000 images, 28 x 28 pixels each) [31]. One 
segment per filter row was used, no sparsity or overlaying. 
Three layers were alternated between the two algorithms. 
The PCILT and AVC creation overhead was found to be 
relatively small – between 10% and 25% of the speed gain. 

 
TABLE 1. BOOLHASH SPEED AND MEMORY REQUIREMENTS, 

COMPARED TO A CLASSIC WEIGHT-ADDER ALGORITHM 
 

Filter size 8x8 7x7 6x6 5x5 4x4 3x3 

BoolHash N 8 7 6 5 4 3 

Speed 
gain, 
times 

4x6x8 
neurons 

6.59 5.71 4.78 3.87 2.92 2.15 

20x30x
8 

neurons 
5.47 5.96 5.24 3.64 3.15 2.17 

Filter memory 
usage, times 

64.0 36.6 21.3 12.8 8.0 5.3 

 
 Table 1 shows how BoolHash compares to the classic 
algorithm in the processing speed and the memory 
requirements, only for the convolutional operations. In the 
N=8 filter column and the row for 20 x 30 x 8 neurons can 
be seen a speed dip, caused by the PCILTs size exceeding 
the RAM cache. 
 Specialized hardware might bring different results. We 
expect that a BoolHash-specific CNN ASIC, when compared 
to a DM/WA-specific CNN ASIC, will achieve at least the 
same speed advantage as our tests do, and a greater 
advantage when using floating-point weights. 
 

VII. CONCLUSIONS 
 
 Based on our theoretical analysis and the results from the 
practical tests, we conclude that BoolHash shows 
significantly better inference speed than the classic 
(DM/WA) style algorithm in CNNs with boolean or integer 
activations, and can also be used to speed up separable 
convolutions algorithms. We also conclude that it can easily 
be implemented in custom ASICs, requiring less circuitry 
than the classic DM/WA algorithm. The speed gain grows 
with the N value, at the cost of higher memory requirements, 
allowing for choosing a task-specific optimal balance. 
 CNNs that use data and weights of limited cardinality 
usually have a small memory footprint, so the required 
memory will often be within acceptable limits. We also 
describe methods to decrease the memory requirements of 
BoolHash. We note also that adding some extra memory into 
a hardware platform is often justified by the speed gain over 
the system lifetime. 

 Finally, BoolHash allows in some cases implementing 
through a single fast-working filter some functionalities that 
are usually achieved in more complex and slow ways. 
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