
Proc. XXX International Scientific Conference Electronics - ET2021, September 15 - 17, 2021, Sozopol, Bulgaria

978-1-6654-4518-4/21/$31.00 ©2021 IEEE

BoolHash: A New Convolutional Algorithm for

Boolean Activations

Grigor K. Gatchev and Valentin S. Mollov
Department of Computer Systems, Faculty of Computer Systems and Technologies

Technical University of Sofia
8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria

grigor@gatchev.info, mollov@tu-sofia.bg

Abstract – Integer algorithms, where applicable, can both

decrease the memory requirements and improve the speed of

the convolutional neural networks (CNN). Boolean activations

can further increase the speed gain. Here, we propose a

convolutional algorithm called BoolHash. It is based on pre-

calculated inference lookup tables (PCILTs). In addition, it uses

activation merging to additionally increase the inference speed.

We used a CNN with INT16 input weights, INT8 filter weights

and boolean activations to compare the speed of BoolHash to

that of a classic weight-adder (WA) convolutional algorithm.

Keywords – boolean activations, convolutional neural

network, inference speed, integer weights. PCILTs.

 This paper describes an extended version of the base
BoolHash algorithm, which was originally reported in [1].

I. INTRODUCTION

 The convolutional neural networks (CNNs) achieve some
of the best artificial neural networks (ANNs) precisions. At
the same time, they have lower computing requirements
(CRs) than most other ANNs. Their algorithms however
involve a lot of arithmetical operations. To achieve better
productivity, they are usually run on hardware architectures
that feature high-speed ALUs.
 A different road to faster work is the usage of algorithms
that rely on faster and/or fewer operations. Yet another is
using operations that require simpler hardware – it is not only
faster, but also uses less on-chip size, thus allowing to fit
more processing units on a single die. These approaches can
often be combined to allow for faster and cheaper solutions.

II. OVERVIEW AND RECENT RESEARCH REPORTS

 Many attempts to reduce the CRs of the CNNs exist. V.
Sze et al. [2] categorize them into three classes, based on
their design levels: hardware platforms, memory
technologies and software algorithms. We focused our work
on the second and the third area, while taking into account
how they reflect on the first area.
 Most research in memory technologies is focused on
decreasing the bit width of the processed values (input
weights, filter weights, activations, etc), and/or on using
integer instead of floating-point arithmetic. Examples are:

• Ilin et al. [3] use 8-bit integer arithmetic (INT8) in image
recognition to approximate calculations.

• Truong et al. [4] compares the memory footprint of
Integer-Net with a 32-bit floating-point (FP32)
implementation and achieves 7x reduction, at the cost of
only 2% loss of performance.

• Wu et al. [5] create a NN model with integer-only data:
2-bit (INT2) weights, INT8 activations, INT8 gradients
and INT8 errors.

• Das et al. [6] implement AlexNet and other ANNs, using
16-bit (INT16) and 32-bit (INT32) dynamic fixed point
values. With these, they achieve improved throughput on
Xeon CPUs, while preserving the accuracy of the
originals.

• de Bruin et al. [7] implement ANNs on low-end hardware
(embedded ARM CPUs) by achieving sufficient
quantization on 16-bit CPU accumulators.

• F. Zhu et al. [8] train unified INT8 ANNs and research
their gradients. They propose universal techniques for
managing these that avoid the direction deviation and the
illegal gradient updates.

• Rastegari et al. [9] describe Binary Weight Networks,
where filter weights are boolean, and XNOR-Networks,
where both weights and activations are boolean. With
these, they achieve results equal to or better than AlexNet
and a BinaryNet implementation of ImageNet.

• While trying to improve the precision of Binary Weight
Networks, Li et al. [10] propose Ternary Weight
Networks. There weights can have three possible values
instead of two. C. Zhu, et al. [11] add a quantization
technique to these.

• X. Lin et al [12] work on the performance of CNNs with
binary weights and activations. They improve it by
approximating full-precision weights with linear
combination of multiple binary weight bases. They also
use multiple binary activations to alleviate information
loss.

• In [13], Jacob et al. describe an algorithm that quantizes
weights and activations down to INT8, and bias vectors
down to INT32.

• Gysel et al. [14] create a framework for approximating
ANNs while reducing the bit width of their values. They
state that it is often able to reduce a network to using
INT8 values with a loss of precision smaller than 1%.

• Yu-Chen Lin et al. [15] replace the floating point
multiplier in IA-Net with an integer adder. They also
target memory reduction through model compression.
They also achieve 20% reduction of the inference time.

 The efforts on decreasing the CRs of CNNs appear to be
focused mostly on researching faster matrix multiplication
algorithms. Examples are:

• Mathieu at al. [16] compute convolutions as Fourier
pointwise products. They achieve speedup of over a
magnitude by reusing the transformed feature map.

• Abtahi et al. [17] increase convolution speed several
times by using FFT variants.

• Chitsaz et al. [18] point that splitting solves some
problems in FFT computation with small kernels, like
the ones in a typical CNN.

• Lavin et al. [19] propose a family of algorithms, based
on Winograd’s minimal filtering, that use fast matrix
multiplication. They reduce the CNN multiplications up
to 2.25 times.

• In [20], Ju et al. analyze many fast convolution
algorithms, presenting them as formal bilinear ones.
They show that the overlap-add and Winograd family
algorithms rival the accuracy of FFT while avoiding
complex arithmetic. They present a corollary for the
minimum rank of a bilinear algorithm for linear
convolution, and present algorithms that achieve it.

• Kim et al. [21] test AlexNet versions on GPUs and find
that both FFT and Winograd / Toom-Cook methods are
up to 4x faster than the direct multiplication (DM)
method. (We believe that this might not be true on
custom ASICs, due to the bigger and more complex
circuitry required by these methods.)

• In [22], Sifre introduces separable convolution. Lebedev
et al. use in [23] spatially separable convolution, and
increase speed with only a small precision loss, through
not using some filters.

• Chollet [24] and Ghosh [25] describe depthwise
convolution and show that it avoids some limitations of
the spatially separable convolution.

• Lebedev et al. and He et al. [26] apply decomposition
(CP- and depth-wise, respectively) to speed up separable
convolution.

III. CONSIDERATIONS

 Comparing the hardware energy consumption and on-chip
area of INT8 and FP32 operations, Daily [27] finds that the
difference in speed is 30x for addition and 18.5x for
multiplication, and the difference in on-chip area is 116x for
addition and 27x for multiplication, in favor of INT8.
Assuming an addition-based DM algorithm variant and
integer-only ALU, we deduce on this base that an ASIC
implementing an INT8-based CNN might be over 300x
faster than an ASIC that implements an FP32-based CNN.
 Jacob et al. [13] observe that on modern hardware with
pipelined instructions addition instructions are not faster than
multiply/add instructions. However, in a custom ASIC an
addition-only circuitry will inevitably be faster and smaller
on-chip than a multiply/add circuitry.
 Rastegari et al. [9] show that boolean filter values permit
using addition instead of multiplication as a convolutional
operation. Further on, they show that having also boolean
activations permits using bitwise operations in convolution.
This results in a very fast algorithm with acceptably precise
results in some tests. Li et al. [10] also use addition instead
of multiplication in ternary weight networks.
 In [28], Ko et al. conclude that substantial bit width
decreases can severely degrade performance. However,
Zhou et al. [29] design an incremental network quantization
algorithm that achieves significant bit width decrease
without performance loss, at the cost of being significantly
more complex. The biological neural networks (BNNs),
whose functionality the ANNs imitate, achieve in many
neurons a fine-grainedness of the input weighting that is
equivalent to bit width of 8 or more. Some of them also
achieve an equivalent of an activation bit width of 4 bits or
more, mostly through varying the frequency of their spikes.
 Due to this, we believe that boolean input and/or filter
weights might be insufficient for most CNN tasks, especially

when combined with boolean activations. However, we also
note that activation bit width over 1 can often be replaced
with higher bit width of the filter and/or the input weights,
and possibly with a higher connectivity (eg. number of
neurons in a layer), without degrading the results precision.
 Many biological neurons and even some “layers” in BNNs
have effectively boolean activations. This makes us conclude
that for some tasks, sizable parts of ANNs or even entire
ANNs can rely on boolean activations without
compromising the task they perform.
 Using boolean activations also eliminates the need for
ReLU layers. This improves the network speed and memory
footprint, and simplifies its overall algorithm, making it
easier to design an ASIC for. Due to this, boolean activations
would be the preferred choice where they can achieve
satisfactory results.

IV. OUR MODEL

 To improve the inference speed, we designed an
experimental CNN model with INT16 input weights, INT8
filter weights and boolean activations. Despite that
Krishnamoorthi [30] concludes that input weights are
quantizable to 4 bits only, we opted for the largest bit width
in them, in order to keep the activations boolean and the size
of the filter weights as low as possible (see Part V for the
reasons). Our objective was to use as convolutional operation
integer-only addition. This would allow us to keep the
computational load as low as possible, since this operation
makes the most calculations in a CNN network. At the same
time, it would preserve sufficient inference base bit width to
be able to achieve acceptable precision in many types of
tasks. We left open the possibility to add and test other
algorithms too.
 To preserve the potential ASIC simplicity, we opted also
for boolean-only backpropagation / gradient signals, taking
the risk of decreasing the backpropagation efficiency and
hence the training precision.
 An exception from these constraints is that the input layer
can process test data with higher bit width. Also, the output
layer can produce activations with higher bit width (up to
INT64), to allow for better evaluation of the results.
 We wanted to test our designs in a strictly integer system,
avoiding any possible involvement of floating-point
operations and thus affecting the precision. To that goal, we
implemented our model in C++ from the ground up, without
defining floating-point data types anywhere in the code, or
using any external code that could possibly contain floating-
point operations.
 Seeking for faster convolutional algorithms that benefit
specifically from boolean activations, we designed and
suggest here an algorithm that we named BoolHash.

V. THE BOOLHASH ALGORITHM

A. Description

 BoolHash combines two algorithmic approaches that so
far have been used rarely and separately. One is the usage of
look-up tables – in our case, for inference results. The other
is treating the activations block as a bitstream that can be
separated into processed values in any way that will improve
the inference speed.
 When using boolean activations, filter weights are added
(instead of being multiplied) to the inference function dot
result (DR) where the matching receptive field (RF)
activation is true (1), and are skipped where the activation is
false (0). Thus, the algorithm falls into the group of the
weight-adders.

 A filter is divided into segments, having N values each. In
a receptive field, the activations that match the filter values
in a segment are used as bits in an N-bit index. (Figure 1).

Fig. 1. Filter and RF segments. Calculating PCILT offsets.

 This index points to a pre-calculated filter weights sum
(FWS), of the segment weights that match the “true”
activation values. The FWSes for a segment are held in a pre-
calculated inference lookup table (PCILT).
 After being located by this index, the FWS for each
segment is added to the DR. Thus, the DR is calculated by N
times less additions than in the classing weight-adder
algorithm. (Figure 2).

Fig. 2. Finding FWSes in filter PCILTs by PCILT offsets

 Every filter segment has its own PCILT, containing the
sums for the segment weights matching all possible
combinations of activations values (Figure 3). Calculating
the PCILTs is done only once in the filter lifetime, so the
speed overhead it adds to the data processing is negligible.
 In pre-trained CNNs the PCILTs can be saved in a
permanent memory that allows fast look-ups. Also, the
PCILT calculation code can be omitted there, decreasing the
memory requirements.

Fig. 3. Calculating a PCILT by a filter segment.

 If the filter segments of the different neurons match, the
activation values combinations (AVC) for every RF segment
can be reused in all neurons that process the same activations
block – typically all neurons in a layer. In this case, the AVCs
are best calculated when the activations block enters the
convolutional layer. The overhead of this is usually much
smaller than the economy on calculations of the algorithm.

In large CNNs with hundreds or thousands of neurons in a
layer, it is negligible.
 Calculating PCILTs needs only an adder, and AVCs are
calculated through bit masking and shifting. A BoolHash-
specific ASIC can use for these operations circuitry that is
faster and takes much less on-chip space than a
multiplication-able ALU.

B. Disadvantages

 BoolHash can require substantially more memory than
algorithms like DM, separable convolutions or even FFT.
The PCILT size is 2N: for N=8, a PCILT will have 256
values. Also, a PCILT value might require more memory
than a filter weight.
 Pre-calculating all AVCs also increases N times the
amount of memory needed for the activations. This can be
alleviated by the fact that many types of hardware keep for
optimal performance every data value in a separate byte, or
even a combination of bytes. Thus, even a single data bit
might need to be stored in 8, 16, 32 or 64 bits of RAM for
optimal speed. Combining the data needs in such cases much
less extra memory.
 The memory expense importance depends on the specific
hardware. BoolHash would be a wrong choice for systems
with good arithmetic speed and limited memory. It can also
be slow on systems with small RAM cache, if the PCILTs
size significantly exceeds it – that would increase the cache
swapping frequency. Tuning the algorithm to minimize the
cache swapping might alleviate this problem.
 BoolHash implementations over suitable ASICs would
best integrate logic and PCILT memory as closely as
possible. For example, they can calculate an RF inference by
having a number of units, equal to the filter segments
number, each of them using its AVC as an address in a local
fast memory, containing its PCILT.

C. Overcoming the memory expense

 PCILT memory can be reduced by decreasing the N
factor, seeking a task-specific optimal balance between
speed gain and increased memory usage. For example, using
N=4 instead of 8 will require PCILT memory for only 32
values instead of 256, and will process 8 activations / filter
weights with 2 additions instead of 1 (but still not with 8
additions). This, it will need 8 times less PCILT memory at
the cost of 2 times slower inferring process.
 For some filters the number of the possible FWSes might
be much smaller than the number of the possible weight
combinations. (For example, with N=8 there will be 256
possible weights combinations. However, if weight values
repeat often, as is the case in many popular filters, there
might be only 15-20 different sums of them.) If a FWS has
higher bit width than is needed for a PCILT pointer, using an
intermediary table with pointers to a PCILT that contains
only the unique FWSes might bring a reduction of the
memory used, at the cost of an additional indirection.
 In addition, in large CNNs a neuron often has many filters.
Usually the range and the diversity of the weight values in
most of these are similar – their unique FWSes will overlap
significantly. Moreover, some filters often repeat across
many of the neurons in a layer. This makes it possible to use
a common unique PCILT for all filters in a neuron, or even
in a layer, decreasing further the memory it needs.
 In many cases, filters can be divided into segments in such
a way that many of their PCILTs will repeat – within the
same filters, and / or between different filters in a neuron,
layer or even the entire CNN. Segments that are identical by
values and their order will have identical PCILTs. These can

be replaced with pointers to an unique one. This can reduce
the number of actual PCILTs in a CNN, leading to a decrease
of the memory needed. It is best expressed with filters of a
low actual cardinality. For example, an arbitrarily big CNN,
having INT16 filter weights with actual cardinality of 32 and
N=4, will need only about 64 MB PCILT memory. This is
comparable with the RAM cache size for the best CPUs, as
of 2021, and would be easy to provide in a CNN ASIC. (It
however might require filter-specific AVCs, the generation
of which might require more resources.)
 Another way to decrease the memory needs is to consider
the combined bit width of all filter weights in a segment. If
the weights are INT7 and N is 8 (3 bits), a FWS value will
need 10 bits, which would be rounded in most systems up to
two bytes. However, if the filter weights are INT5 and N is
8, the memory needed by a FWS value will be 8 bits – one
byte only. (That is why we used in our model larger bit width
in the input weights and smaller one in the filter weights.)

D. Additional improvements and variants

 With sufficient PCILT memory and small filters, one
segment can cover an entire filter (Figure 4). This makes
possible to obtain DR by a single memory addressing,
without using – or having at all – an ALU.

Fig. 4. A filter covered entirely by one segment, obtaining the
inference result for an entire RF by just one PCILT access.

 On different hardware, different filter segment layouts
might ensure better speed than others. For example, on some
hardware the inference might be faster if FWSes span
columns, and on another if they span rows.
 The value positions in a filter segment do not have to be
consecutive. This allows implementing sparse filters that
skip from processing any irrelevant RF positions or regions,
increasing further the inference speed. AVCs are shared
between same-input filters, and different filters might
emphasize on different data regions, which limits the
irrelevant percentage, require calculating different AVCs for
different filters or sets of filters, etc. However, most types of
data usually have a substantial irrelevant percentage, and
most CNN layers have many filters that repeat between
neurons. Thus, the processing speed might benefit from this
ability of BoolHash.
 Some value positions can be included in more than one
filter segment, or even more than one time in the same
segment. This allows weighting some RF positions or
regions beyond what a limited filter weights range can
achieve, at the cost of slight processing delay. Thus it allows
limiting the weights range, which can decrease the memory
needed by BoolHash. It also allows having different weight
bit width for different filter positions.
 Different segments in a filter may use different weight
ranges and/or count of values per segment. This can be used
to increase the speed and decrease the memory usage, esp.
with non-consecutive value positions, or RF regions needing
different weighting range.

 The PCILT values can incorporate the input weight too,
removing the need to multiply the DR by it. During the NN
learning phase this will require modifying them during the
backpropagation adjustment. Such a variant will be slower
and more complex than modifying one input weight only. A
suitable algorithm for modifying only relevant values in
PCILTs might limit the slowing and potentially can make the
weight adjustment more selective, where that is needed or
acceptable.
 This variant has much more modifiable weight values
space than the DM algorithm. The difference with the
separate convolution algorithms is even greater. This creates
a potential for achieving better precision. (The redundancy
there would probably be high. However, it can be removed
post-learning, or even during learning through suitable
methods for network compression.) Importantly, the weights
space enlargement does not carry a proportional increase of
the calculation load, unlike the other convolution algorithms
– to the contrary, it decreases the computational load.
 Another benefit is the ability to have segments that include
weight values from different input filters. While misusing
this might degrade the learning, using it correctly can allow
for memory economy and increased speed.
 By combining sparse, overlayed and/or multi-filter
segments, BoolHash can perform through a single fast filter
tasks that in some cases need more complex and / or slower
processing (Figure 5).

Fig. 5. A filter with INT2 weights,
having both sparse and overlayed segments.

Zero weights (not shown) are not processed, increasing speed.
Weights with gray background are included in FWSes more than

once, increasing their weight beyond the INT2 range.

 The algorithmic base of BoolHash – using PCILTs with
combined activations – is not limited to CNNs with boolean
activation. It can work with integer activations and any filter
weights. With non-boolean activations however it will need
multiplication as a convolutional operation. Its only
limitation is the amount of memory that might require.
Activations with too big cardinality might require
prohibitively big PCILTs, and/or might slow processing by
increasing the RAM cache swapping.
 BoolHash is also not limited to integer-only CNNs: it
works equally well with floating-point filter weights. With
them, it should bring even bigger speed improvements, but
also will increase the memory requirements.
 BoolHash can be used at the first stage of both spatially
separable convolutions and depthwise convolutions. A
BoolHash-specific CNN ASIC, will likely implement that as
two successive operations in the separable convolution
inference process, each using its own circuitry. This can help
parallelizing the inference operations, and additionally
speeding them up.

VI. RESULTS

 We compared the speed and the memory requirements of
BoolHash and the classic DM algorithm in our
implementation on 5 different general-purpose CPUs (Intel
Core i7-3770K, Intel Xeon E5-2690, Intel Xeon E5-2450L,
Intel Xeon E31220 and AMD A8-5600K). For tests fitting in
their Level 1 RAM caches, all of them deviated from the
average results by less than 5%. We attribute the deviations
to differences between the CPUs in the size and the policies
of the Level 2 and 3 RAM cache, and of the ALU and RAM
access. Bigger deviations were observed where RAM usage
exceeded the Level 1 cache size.
 We used as data sources the MNIST Handwritten Digits
database (60,000 images, 28 x 28 pixels each) [31]. One
segment per filter row was used, no sparsity or overlaying.
Three layers were alternated between the two algorithms.
The PCILT and AVC creation overhead was found to be
relatively small – between 10% and 25% of the speed gain.

TABLE 1. BOOLHASH SPEED AND MEMORY REQUIREMENTS,

COMPARED TO A CLASSIC WEIGHT-ADDER ALGORITHM

Filter size 8x8 7x7 6x6 5x5 4x4 3x3

BoolHash N 8 7 6 5 4 3

Speed
gain,
times

4x6x8
neurons

6.59 5.71 4.78 3.87 2.92 2.15

20x30x
8

neurons
5.47 5.96 5.24 3.64 3.15 2.17

Filter memory
usage, times

64.0 36.6 21.3 12.8 8.0 5.3

 Table 1 shows how BoolHash compares to the classic
algorithm in the processing speed and the memory
requirements, only for the convolutional operations. In the
N=8 filter column and the row for 20 x 30 x 8 neurons can
be seen a speed dip, caused by the PCILTs size exceeding
the RAM cache.
 Specialized hardware might bring different results. We
expect that a BoolHash-specific CNN ASIC, when compared
to a DM/WA-specific CNN ASIC, will achieve at least the
same speed advantage as our tests do, and a greater
advantage when using floating-point weights.

VII. CONCLUSIONS

 Based on our theoretical analysis and the results from the
practical tests, we conclude that BoolHash shows
significantly better inference speed than the classic
(DM/WA) style algorithm in CNNs with boolean or integer
activations, and can also be used to speed up separable
convolutions algorithms. We also conclude that it can easily
be implemented in custom ASICs, requiring less circuitry
than the classic DM/WA algorithm. The speed gain grows
with the N value, at the cost of higher memory requirements,
allowing for choosing a task-specific optimal balance.
 CNNs that use data and weights of limited cardinality
usually have a small memory footprint, so the required
memory will often be within acceptable limits. We also
describe methods to decrease the memory requirements of
BoolHash. We note also that adding some extra memory into
a hardware platform is often justified by the speed gain over
the system lifetime.

 Finally, BoolHash allows in some cases implementing
through a single fast-working filter some functionalities that
are usually achieved in more complex and slow ways.

VIII. ACKNOWLEDGEMENTS

 The authors would like to thank all reviewers for their
constructive comments and valuable suggestions and the
Science Research Sector of the Technical University – Sofia
for the financial support to report this paper.

IX. REFERENCES

[1] G. Gatchev, V. Mollov, “Integer convolutional neural

networks with boolean activations: the BoolHash algorithm”,
2020 European Conference on Circuit Theory and Design,
doi:10.1109/ECCTD49232.2020.9218306.

[2] V. Sze, Y. Chen, T. Yang and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey”, Proceedings
of the IEEE, vol. 105, no. 12, pp. 2295–2329, Dec 2017,
doi:10.1109/JPROC.2017.2761740.

[3] D. Ilin, E. Limonova, V. V. Arlazarov and D. Nikolaev, “Fast
integer approximations in convolutional neural networks using
layer-by-layer training”, Research Gate, 103410Q.
10.1117/12.2268722, doi:10.1117/12.2268722.

[4] N. D. Truong et al, “Integer convolutional neural network for
seizure detection”, IEEE Journal of Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 4, pp. 849-857,
doi:10.1109/JETCAS.2018.2842761.

[5] S. Wu, G. Li, F. Chen and L. Shi, “Training and inference with
integers in deep neural networks”, arXiv:1802.04680.

[6] D. Das et al, “Mixed precision training of convolutional neural
networks using integer operations”, arXiv:1802.00930v2.

[7] B. de Bruin, Z. Zivkovic and H. Corporaal, “Quantization of
constrained processor data paths applied to convolutional
neural networks”, in: 2018 21st Euromicro Conference on
Digital System Design (DSD), 2018, pp. 357–364,
doi:10.1109/DSD.2018.00069.

[8] F. Zhu et al, “Towards unified INT8 training for convolutional
neural network”. ArXiv:1912.12607.

[9] M. Rastegari, V. Ordonez, J. Redmon and A. Farhadi,
“XNOR-Net: ImageNet classification using binary
convolutional neural networks”, EECV 2016 Proceedings,
Part IV, pp. 525-542, doi:10.1007/978-3-319-46493-0_32.

[10] F. Li, B. Zhang, B. Liu, “Ternary weight networks”,
arXiv:1605.04711.

[11] C. Zhu, S. Han, H. Mao and W. Daily, “Trained ternary
quantization”, arXiv:1612.01064.

[12] X. Lin, C. Zhao and W. Pan. “Towards accurate binary
convolutional neural network”, Advances in Neural
Information Processing Systems 30 (NIPS 2017)..

[13] B. Jacob et al, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference”, 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition”, Salt Lake City, UT, 2018, pp. 2704-2713,
doi:10.1109/CVPR.2018.00286.

[14] P. Gysel, J. Pimentel, M. Mohammad and S. Ghiasi, “Ristretto:
A framework for empirical study of resource-efficient
inference in convolutional neural networks”. IEEE
Transactions on Neural Networks and Learning Systems, vol.
29, no. 11, pp. 5784-5789, doi:10.1109/TNNLS.2018.
2808319.

[15] Yu-Chen Lin, Yi-Te Hsu, Szu-Wei Fu, Yu Tsao and Tei-Wei
Kuo, “IA-NET: Acceleration and compression of speech
enhancement using integer-adder deep neural network”,
Research Gate, 10.21437/Interspeech.2019-1207,
doi:10.21437/Interspeech.2019-1207.

[16] M. Mathieu, M. Henaff, Y. LeCun: “Fast training of
convolutional networks through FFTS”, International
Conference on Learning Representations (ICLR), 2014.

[17] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin:
“Accelerating convolutional neural network with FFT on
embedded hardware”, IEEE Trans. Very Large Scale Integr.
Syst., vol. 26(9), pp.1737-1749, 2018, doi:10.1109/TVLSI.
2018.2825145.

[18] K. Chitsaz, M. Hajabdollahi, N. Karimi, S. Samavi, S. Shirani:
“Acceleration of convolutional neural network using FFT-
based split convolutions”, 2020, arXiv:2003.12621..

[19] A. Lavin, S. Gray: “Fast algorithms for convolutional neural
networks”, arXiv:1509.09308, doi:10.1109/CVPR.2016.435.

[20] C. Ju, E. Solomonik: “Derivation and analysis of fast bilinear
algorithms for convolution”, 2020, arXiv:1910.13367,
doi:10.1137/19M1301059.

[21] H. Kim, H. Nam, W. Jung, J. Lee: “Performance analysis of
CNN frameworks for GPUs”, in 2017 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2017, pp. 55–64,
doi:10.1109/ISPASS.2017.7975270.

[22] L. Sifre: “Rigid-motion scattering for image classification,
PhD, 2014, https://www.di.ens.fr/data/publications/papers/
phd_sifre.pdf, arXiv:1403.1687.

[23] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V.
Lempitsky: “Speeding-up convolutional neural networks
using fine-tuned CP-decomposition”, 24 Apr 2015,
arXiv:1412.6553.

[24] F. Chollet: “Xception: Deep learning with depthwise separable
convolutions”, 4 Apr 2017, arXiv:1610.02357,
doi:10.1109/CVPR.2017.195.

[25] T. Ghosh: “Towards a new interpretation of separable
convolutions”, 16 Jan 2017, arXiv:1701.04489.

[26] Y. He, J. Qian, J. Wang: “Depth-wise decomposition for
accelerating separable convolutions in efficient convolutional
neural networks”, 21 Oct 2019, arXiv:1910.09455.

[27] W. Daily, “High-performance hardware for machine
learning”, 2015, Tutorial, NIPS..

[28] J. H. Ko, J. Fromm, M. Philipose, I. Tashev, and S. Zarar,
“Precision scaling of neural networks for efficient audio
processing”, 2017, arXiv preprint arXiv:1712.01340..

[29] A. Zhou, A. Yao, Y. Guo, L. Xu and Y. Chen, “Incremental
network quantization: Towards lossless CNNs with low-
precision weights”, in Proc. ICLR, 2017..

[30] R. Krishnamoorthi, “Quantizing deep convolutional networks
for efficient inference: A whitepaper”, arXiv:1806.08342.

[31] Y. LeCun, C. Cortes and C.J. C. Burges, The MNIST Database
of Handwritten Digits, http://yann.lecun.com/exdb/mnist/ .

