Ethereum, Proof-of-Stake… and the consequences

For those who have been living the last few years in a cave without Internet: Ethereum is a cryptocurrency project, based around the coin Ether. It has the support of many big banks, big hedge funds and some states (Russia, China etc). Among the cryptocurrencies, it is second only to Bitcoin – and might even overtake it with the time. (Especially if Bitcoin doesn’t finally move and fix some of its problems.)

Ethereum offers some abilities that few other cryptocurrencies do. The most important one is the support for “smart projects” – kind of electronic contracts that can easily be executed and enforced with little to no human participation. This post however is dedicated to another of its traits – the Proof of Stake.

To work and exist, every cryptocurrency depends on some proof. Most of them use Proof-of-Work scheme. In it, one has to put some work – eg. calculating checksums – behind its participation in the network and its decision, and receive newly generated coins for it. This however results in huge amount of work done only to prove that, well, you can do it and deserve to be in and receive some of the newly squeezed juice.

As of August 2017, Ethereum uses this scheme too. However, they plan to switch to a Proof-of-Stake algorithm named Casper. In it, you prove yourself not by doing work, but by proving to own Ether. As this requires practically no work, it is much more technically effective than the Proof-of-Work schemes.

Technically, Caspar is an amazing design. I congratulate the Ethereum team for it. However, economically its usage appears to have an important weakness. It is described below.


A polarized system

With Casper, the Ether generated by the Ethereum network and the decision power in it are distributed to these who already own Ether. As a consequence, most of both go to those who own most Ether. (There might be attempts to limit that, but these are easily defeatable. For example, limiting the amount distributed to an address can be circumvented by a Sybil attack.)

Such a distribution will create with the time a financial ecosystem where most money and vote are held by a small minority of the participants. The big majority will have little to no of both – it will summarily hold less money and vote than the minority of “haves”. Giving the speed with which the cryptocurrency systems evolve, it is realistic to expect this development in ten, maybe even in five or less years after introducing Casper.

The “middle class”

Economists love to repeat how important is to have a strong middle class. Why, and how that translates to the situation in a cryptocurrency-based financial system?

In systemic terms, “middle class” denotes in a financial system the set of entities that control each a noticeable but not very big amount of resources.

Game theory shows that in a financial system, entities with different clout usually have different interests. These interests usually reflect the amount of resources they control. Entities with little to no resources tend to have interests opposing to these with biggest resources – especially in systems where the total amount of resources changes slowly and the economics is close to a zero-sum game. (For example, in most cryptocurrency systems.) The “middle class” entities interests in most aspects are in the middle.

For an economics to work, there must be a balance of interests that creates incentive for all of its members to participate. In financial systems, where “haves” interests are mostly opposing to “have-nots” interests, creating such a balance depends on the presence and influence of a “middle class”. Its interests are usually the closest to a compromise that satisfies all, and its influence is the key to achieving that compromise within the system.

If the system state is not acceptable for all entities, these who do not accept it eventually leave. (Usually their participation is required for the system survival, so this brings the system down.) If these entities cannot leave the system, they ultimately reject its rules and try to change it by force. If that is impossible too, they usually resort to denying the system what makes them useful for it, thus decreasing its competitiveness to other systems.

The most reliable way to have acceptable compromise enforced in a system is to have in it a “middle class” that summarily controls more resources than any other segment of entities, preferably at least 51% of the system resources. (This assumes that the “middle class” is able and willing to protect their interests. If some of these entities are controlled into defending someone else’s interests – eg. botnets in computer networks, manipulated voters during elections, etc – these numbers apply to the non-controlled among them.)

A system that doesn’t have a non-controlled “middle class” that controls a decisive amount of resources, usually does not have an influential set of interests that are an acceptable compromise between the interests poles. For this reason, it can be called a polarized system.

The limitation on development

In a polarized system, the incentive for development is minimized. (Development is potentially disruptive, and the majority of the financial abilities and the decision power there has only to lose from a disruption. When factoring in the expected profits from development, the situation always becomes a zero-sum game.) The system becomes static (thus cementing the zero-sum game situation in it) and is under threat of being overtaken by a competing financial system. When that happens, it is usually destroyed with all stakes in it.

Also, almost any initiative in such a financial system is bound to turn into a cartel, oligopoly or monopoly, due to the small number of participants with resources to start and support an initiative. That effectively destroys its markets, contributing to the weakness of the system and limiting further its ability to develop.

Another problem that stems from this is that the incentive during an interaction to violate the rules and to push the contragent into a loss is greater than the incentive to compete by giving a better offer. This in turn removes the incentive to increase productivity, which is a key incentive for development.)

Yet another problem of the concentration of most resources into few entities is the increased gain from attacking one of them and appropriating their resources, and thus the incentive to do it. Since good defensive capabilities are usually an excellent offense base, this pulls the “haves” into an “arms race”, redirecting more and more of their resources into defense. This also leaves the development outside the arms race increasingly resource-strapped. (The “arms race” itself generates development, but the race situation prevents that into trickling into “non-military” applications.)

These are only a part of the constraints on development in a polarized system. Listing all of them will make a long read.

Trickle-up and trickle-down

In theory, every economical system involves two processes: trickle-down and trickle-up. So, any concentration of resources on the top should be decreased by an automatically increased trickle-down. However, a better understanding how these processes work shows that this logic is faulty.

Any financial exchange in a system consists of two parts. One of them covers the actual production cost of whatever resource is being exchanged against the finances. The other part is the profit of the entity that obtains the finances. From the viewpoint of that entity, the first part vs. the resource given is zero-sum – its incentive to participate in this exchange is the second part, the profit. That second part is effectively the trickle in the system, as it is the only resource really gained.

The direction and the size of the trickle ultimately depends on the balance of many factors, some of them random, others constant. On the long run, it is the constant factors that determine the size and the direction of the trickle sum.

The most important constant factor is the benefit of scale (BOS). It dictates that the bigger entities are able to pull the balance to their side more strongly than the smaller ones. Some miss that chance, but others use it. It makes the trickle-up stronger than the trickle-down. In a system where the transaction outcome is close to a zero-sum game, this concentrates all resources at the top with a speed depending on the financial interactions volume per an unit of time.

(Actually the formula is a bit more complex. All dynamic entities – eg. living organisms, active companies etc – have an “existence maintenance” expense, which they cannot avoid. However, the amount of resources in a system above the summary existence maintenance follows the simple rule above. And these are the only resources that are available for investing in anything, eg. development.)

In the real-life systems the BOS power is limited. There are many different random factors that compete with and influence one another, some of them outweighing BOS. Also, in every moment some factors lose importance and / or cease to exist, while others appear and / or gain importance. The complexity of this system makes any attempt by an entity or entities pool to take control over it hard and slow. This gives the other entities time and ways to react and try to block the takeover attempt. Also, the real-life systems have many built-in constraints against scale-based takeovers – anti-trust laws, separation of the government powers, enforced financial trickle-down through taxes on the rich and benefits for the poor, etc. All these together manage to prevent most takeover attempts, or to limit them into only a segment of the system.

How a Proof-of-Stake based cryptocurrency fares at these?

A POS-based cryptocurrency financial system has no constraints against scale-based takeovers. It has only one kind of clout – the amount of resources controlled by an entity. This kind of clout is built in it, has all the importance in it and cannot lose that or disappear. It has no other types of resources, and has no slowing due to complexity. It is not segmented – who has these resources has it all. There are no built-in constraints against scale-based takeovers, or mechanisms to strengthen resource trickle-down. In short, it is the ideal ground for creating a polarized financial system.

So, it would be only logical to expect that a Proof-of-Stake based Ether financial system will suffer by the problems a polarized system presents. Despite all of its technical ingenuity, its longer-term financial usability is limited, and the participation in it may be dangerous to any entity smaller than eg. a big bank, a big hedge fund or a big authoritarian state.

All fixes for this problem I could think of by now would be easily beaten by simple attacks. I am not sure if it is possible to have a reliable solution to it at all.

Do smart contracts and secondary tokens change this?

Unhappily, no. Smart contracts are based on having Ether, and need Ether to exist and act. Thus, they are bound to the financial situation of the Ether financial system, and are influenced by it. The bigger is the scope of the smart contract, the bigger is its dependence on the Ether situation.

Due to this, smart contracts of meaningful size will find themselves hampered and maybe even endangered by a polarization in the financial system powered by POS-based Ethereum. It is technically possible to migrate these contracts to a competing underlying system, but it won’t be easy – probably even when the competing system is technically a clone of Ethereum, like Ethereum Classic. The migration cost might exceed the migration benefits at any given stage of the contract project development, even if the total migration benefits are far larger than this cost.

Eventually this problem might become public knowledge and most projects in need of a smart contract might start avoiding Ethereum. This will lead to decreased interest in participation in the Ethereum ecosystem, to a loss of market cap, and eventually maybe even to the demise of this technically great project.

Other dangers

There is a danger that the “haves” minority in a polarized system might start actively investing resources in creating other systems that suffer from the same problem (as they benefit from it), or in modifying existing systems in this direction. This might decrease the potential for development globally. As some of the backers of Ethereum are entities with enormous clout worldwide, that negative influence on the global system might be significant.

Leave a Reply